ALUMNI

8 Irene Simfia (PhD)

Irene Simfia is a PhD researcher in McNamara group. She completed her Bachelors (Honors) in Biomedical Engineering from National University of Ireland in Galway (2014).  At Purdue her Engineering Projects in Community Services (EPICS) project was awarded a Corcoran Award 2013 for “excellence in human-centred design”. Just prior to starting her PhD, Irene was actively involved in a five- month project on Deep Vein Thrombosis Device in National University of Ireland Galway. She was involved in much of the lab work on designing, optimising and testing the device. Irene is one of the IRC award holders in the group. She is currently in second year of her PhD.

The overall objective of Irene’s research is to investigate whether a therapeutic approach that targets the mechanobiological responses of bone cells can provide an effective treatment for bone loss during osteoporosis. Specifically focus is on targetting the Rho/ROCK signalling pathway in estrogen deficient bone cells in vitro to establish changes in cell proliferation, differentiation, gene expression and actin cytoskeleton when these cells are mechanically stimulated.

6 Laura O Sullivan  (PhD)

Laura O’Sullivan graduated from NUI Galway in 2015, with a bachelor’s degree in Biomedical Engineering. During her undergraduate studies, she was awarded the opportunity to work for 17 months (2013-2014) with DePuy Synthes Spine in Switzerland, where she designed, developed and tested various spinal medical devices. In September 2015, she began her Ph.D, as part of Prof. Laoise McNamara’s research team for the Science Foundation Ireland funded Mechanobiology project.

Laura’s PhD research will establish the effectiveness of modulating the mechanotransduction response for preventing bone loss and fracture in an animal model of osteoporosis using micro-CT scanning, tissue composition characterisation, and mechanical characterization on bone tissue.

ivor-geoghegan-profile-photo.jpg Ivor Geoghegan (PhD)

Ivor Geoghegan was awarded a Bachelor of Science degree specialising in Human Anatomy in 2011. He worked for two years in the medical device sector (Lake Region Medical) before returning to NUI Galway to complete an MSc in Biomedical Science in 2015 at NUI Galway. He is undertaking a PhD in Biomedical Engineering entitled “Investigations into bone cell mechanosensory mechanisms” under the supervision of Prof. Laoise McNamara in the Mechanobiology and Medical Devices Research Group in the Discipline (MMDRG) of Biomedical Engineering at NUI Galway and Dr. David Hoey in the Trinity Centre for Bioengineering at Trinity College Dublin.

This project involves the characterisation of mechanosensory mechanisms and mechanobiological responses of bone cells cultured in healthy and estrogen withdrawal conditions. These studies involve bioreactor studies, in vitro cell culture, histology and biological analysis (immunocytochemistry, RT-PCR) expanding on established expertise. A particular focus is to delineate whether changes in mechanosensitive organelles (integrin-based adhesions and primary cilia) occur during osteoporosis, and identify changes in the biochemical signal transduction pathways in response to mechanical loading in osteoporosis. Such information will inform therapeutic interventions that modulate the mechanotransduction process e.g. alter extracellular matrix molecules, mechanoreceptors, cytoskeletal structures or biochemical signalling, and may provide an effective therapy for osteoporosis. This work is also informing the creation and use of a co-culture microfluidic medical device to study the in vivo mechanical environment of bone in healthy and diseased states.

Ivor is funded by the CÚRAM (Centre for Research in Medical Devices).

Websites:
https://www.linkedin.com/in/ivorgeoghegan/
https://www.tcd.ie/bioengineering/draft/biomaterials/hoeylab/
https://www.researchgate.net/profile/Ivor_Geoghegan

5 Hollie Allison (PhD)

Originally from the United Kingdom, Hollie graduated from The University of Sheffield with a First class degree in Biomedical Science. She is a recent addition to Prof. McNamara’s research group. Her research is looking at mechanobiology based approaches for the treatment of osteoporosis.

Hollie’s research will aim to test whether targeting mechanobiological responses of osteoblasts can provide effective treatments for bone loss during osteoporosis. It will involve modulating mechanoreceptors and key mechanotransduction proteins in bone cells from normal and osteoporotic human and animal tissue using in vitro cell culture e.g. MSC’s and primary osteoblast cells. Her research seeks to also modulate mechanotransduction responses in vivo for preventing bone loss, bone tissue composition and fracture in osteoporosis.

ImageJ=1.49v Dr. Jessica Schiavi (Post Doc)

Bone and cartilage tissue are bearing daily loads and the body. Throughout the life-time, they are altered. Her aim is to contribute to research with a nearby clinical application. During her thesis, her  research focus was on the build-up of a stratified scaffold based on alginate laden with human mesenchymal stem cells from bone marrow. The objective was to develop an original strategy to repair defect in the full depth of articular cartilage up to the sub-chondral bone and checked the mechanical behaviour of the scaffold to be secure to have one with suitable strength for articular cartilage defects.

Bone and cartilage tissue are bearing daily loads and the body. Throughout the life-time, they are altered. My aim is to contribute to research with a nearby clinical application. During her thesis, her  research focus was on the build-up of a stratified scaffold based on alginate laden with human mesenchymal stem cells from bone marrow. The objective was to develop an original strategy to repair defect in the full depth of articular cartilage up to the sub-chondral bone and checked the mechanical behaviour of the scaffold to be secure to have one with suitable strength for articular cartilage defects.

During her first post-doc, the goal was to used nano- or microfibrous scaffolds (approved by the FDA) to fill bone and osteochondral defects to accelerate the tissue regeneration by adsorbing growth factors and/or seeding human mesenchymal stem cells on the biomaterial.

Now, Jessica is working on bone mechanobiology in the specific way of osteoporosis. This disease will affect quite the half of women in their life with an increasing after menopausal. The aim is to make the link between the mechanical behaviour of bone compartments at different scales and biological pathway already know to have links with cell sensing capacity. Finally, we could found how to prevent osteoporosis with already know pharmaceutical drugs.

juan alberto perez photo Juan Alberto Panadero Perez (Post Doc)

Dr. Juan Alberto Panadero Perez obtained his bachelor degree in Biotechnology from Polytechnic University of Valencia (Spain), focused on cell and molecular biology. He holds a PhD from the University of Minho (Braga, Portugal). The aim of his thesis was to analyse fatigue of poly-ε-caprolactone (PCL) scaffolds for cartilage tissue engineering. He used different treatment conditions, including the effect inside of the pores of an extracellular matrix produced in vitro after cell culture. The research combined techniques of cell culture (with chondrocytes and bone marrow mesenchymal stem cells), biochemical evaluation of gene expression and extracellular matrix components, development of bioreactor facilities, fabrication of macroporous scaffolds and their physical and mechanical characterization. The results were relevant to conclude that fatigue testing provides information that would otherwise be missed with the usual mechanical testing of scaffolds.

Project Description:
Dr. Juan Alberto Panadero Pérez joined Prof. McNamara’s group in the frame of the SFI funded project: Mechanobiology based approaches for treatment of osteoporosis. His aim is to develop 3D culture models of osteoporotic bone to test the effect of drugs on the recovery or prevention from the disease. Currently, he is generating the required 3D environment in vitro by encapsulating bone cell lines in gelatin hydrogels, that simulate the elastic modulus of the early osteoid. These hydrogels are cultured with cells on bioreactors capable of cyclic hydrostatic pressure and researching the effects of estrogen withdrawal. Juan works as well in the effects of Y-27632, an inhibitor of the protein ROCK, which allows polymerization of the actin cytoskeleton. Our hypothesis is that the inhibitor can reduce the abnormal mineralization that can lead to osteoporosis.  For analysis of these studies, he optimized a method for RNA isolation from cell embedded in gelatin, which right now has a high efficiency for the low cell number we use.  Furthermore, he is developing systems for controlled release of this inhibitor from gels by using nanoparticles of hydroxyapatite (nHA). This kind of hydrogel will be implanted in ovariectomised rats, to allow the release of this inhibitor and other potential therapeutics, such as an antibody against sclerostin.

Daniel pic Daniel  Doherty (M.Sc)

Daniel is a graduate of NUI Galway (2017) where he received his Bachelor of Science degree in Anatomy. For his final year project, he characterised the articular surface of the pisiform bone and the flexor carpi ulnaris tendon enthesis. He correlated the surface features obtained through Scanning Electron Microscopy, to underlying structure through histological techniques, looking specifically for signs of osteoarthritis. In 2018, he returned to NUI Galway to complete the MSc Biomedical Science and has been working on his thesis with Prof. Laoise McNamara and the MMDR group.

Project 

The thesis titled ‘Mechanobiology and Osteogenesis during Osteoporosis’ is focused on the mechanobiology of mesenchymal stem cells (MSCs). It has been shown that MSC osteogenesis is altered by osteoporosis and aging, however the link with mechanical stimulation is not well understood. He is using parallel fluid flow bioreactors that mimic the different shear stresses MSCs undergo within the marrow on samples derived from healthy and osteoporotic patients.  Cellular viability, differentiation, and ECM synthesis are being assessed here using fluorescent microscopy. Changes in protein and gene expression are being investigated via immunohistochemistry and PCR respectively. Finally, osteoclastogenesis with condtion media from the bioreactor experiments is also being assessed using cultured RAW cells.

Claudia profile Jyotsna Dhanyasi (M.Sc)

Jyotsna graduated from the Women’s Christian College (Madras University), India with a bachelor’s degree in Plant Biology and Biotechnology. She was then employed with a destination management company in Dubai, UAE before moving to Ireland to commence her further education at NUI, Galway.

Project 

Currently, Jyotsna is pursuing an MSc in Biomedical Science (2018-19) and is working on her thesis titled “Bone Microenvironment and Cancer Cells”, under the supervision of Prof. Laoise McNamara, MMDR group. This thesis aims to address the importance of the bone microenvironment in skeletal cancer metastasis. Specifically, to explore how the bone microenvironment affects the migration of cancer cells when subjected to gradients of Oxygen tension, acidity and glucose concentrations, in a 2D model.

ozge karadas photo Özge Karadaş (Post Doc)

Özge is a visiting researcher from Izmir Institute of Technology, Turkey and joined the group as a short term EMBO scholar. She is graduated from Ege University Bioengineering Department, Turkey and in her master’s at Middle East Technical University she studied the comparison of osteogenic differentiation of Wharton’s jelly and menstrual blood derived stem cells on collagen scaffolds with in situ grown hydroxyapatite crystals.

She is a PhD student and working as a research assistant at her home university, and her thesis subject is the investigation of the effects of low intensity mechanical vibrations on the differentiation of stem cells seeded on filter paper based scaffolds. As a part of her research, she is performing studies with vibration/perfusion bioreactor at NUIG.

ORLA Orla McGee (PhD)

Orla is a graduate of NUI Galway (2014), who received a Bachelor’s degree in Biomedical Engineering. During her degree Orla received a scholarship to spend her 3rd year studying at Purdue University in the United States. Orla also undertook two international placements in the summers of 2012 and 2013 at Hollister Inc. in Libertyville, IL and at Fort Wayne Metals Ltd. in Fort Wayne, IN respectively. Following her placement at Fort Wayne Metals Orla was awarded the 2014 Rachel Craig Prize for outstanding achievement in professional experience placement. In July 2014 Orla was awarded an Irish Research Council EMBARK Postgraduate Scholarship to pursue a PhD in collaboration with Boston Scientific. Orla specialises in computational modelling and experimental modelling techniques to investigate the long term potential of the next generation of Transcatheter Aortic Heart Valves (TAVI).

Project

Aortic stenosis is a degenerative disease of the aortic heart valve whereby calcium deposits build up on the leaflets of the heart valve and this can lead to regurgitation and stenosis. Transcatheter aortic heart valves are a minimally invasive alternative to surgical heart valves. They consist of tissue leaflets mounted on to a valve stent that is then crimped and delivered via a catheter to the site of the disease. This project involves using experimental and computational techniques to investigate the long term performance of Boston Scientifics LotusTM transcatheter aortic valve.

img_9785 Dr. Eoin Parle (Post Doc)

Eoin holds a degree and a PhD in Mechanical and Manufacturing Engineering from Trinity College Dublin. His doctorate thesis focussed on investigating the mechanical properties of insect cuticle. Eoin examined various mechanical properties such as fatigue, self-repair and recovery from injury. He also examined evolutionary adaptations seen across the insect kingdom, and how the material grows and matures over the life of the insect. A variety of factors were identified as influencing properties such as strength, stiffness, form, geometry and failure mode.

Eoin went on to his first postdoctoral fellowship in UCD, using his experience in materials classification to examine super-hard materials such as PCD (polycrystalline diamond) and PCBN (Polycrystalline Cubic Boron-Nitride) used in the deep sea drilling and heavy manufacturing industries.

Eoin was awarded a 2-year IRC Postdoctoral Fellowship (Government of Ireland) with Prof. McNamara’s group (beginning in September 2016) undertaking preclinical multiscale experimental and computational investigations into bone mechanics to understand bone fracture during osteoporosis. Eoin employed a variety of techniques to examine the structure and composition of healthy and osteoporotic bone with a view to developing a predictive tool for assessing fracture risk.

10 Dr. Fiona Freeman (Post Doc)

After obtaining her Bachelor’s degree in Biomedical Engineering in NUI Galway in 2011, Fiona began her PhD in the Biomedical Engineering department in NUIG with the title “Endochondral Ossification: A new strategy for bone tissue regeneration”. The PhD work involved developing and implementing novel in vitro strategies for in vitro priming of constructs with the aim of generating the optimal format for implantation and bone formation in vivo. Fiona’s PhD focused on trying to replicate the endochondral ossification process, specifically she focused on determining the optimal format for implantation and bone formation in vivo. Fiona passed her VIVA examination in August 2015 and is due to graduate February 2016. Currently, as a postdoctoral researcher, Fiona’s research is aimed at developing an innovative methodology that relies on replicating the cellular, biochemical and mechanical environment during endochondral ossification in order to further enhance the bone regeneration potential of bone tissue engineered constructs.

image-11.png Dr. Noel Reynolds (Post Doc)

After obtaining his Bachelor’s degree in Mechanical Engineering in NUI Galway in 2010, Noel began his PhD in the Biomedical Engineering department in NUIG with the title “Experimental and computational investigation of the active force generation of cells subjected to static and dynamic loading”. The PhD work involved designing and implementing novel in vitro experimental methodologies and state-of-the-art computational techniques to investigate the contribution of the actin cytoskeleton to the mechanical behaviour of cells. Noel is due to undergo his viva examination in December 2015.

As part of his postdoctoral work Noel will perform in vitro experiments to examine the biomechanics involved in bone remodelling, with a view to understanding how mechanical cues lead to homeostatic imbalance in bone and diseases such as osteoporosis.

2 Dr. Feihu Zhao 

Feihu Zhao joined the group as a Ph.D. student in December 2012 after receiving his M.Sc. degree (Machine Automation) from Tampere University of Technology, Finland. During his M.Sc. study, Feihu Zhao designed and optimised a biomedical device, which was used for mechanical stimulation of cells (i.e. bone cells, cardiomyocytes), and quantified the mechanical environment in the device by computational approaches. Previously, Feihu obtained his B.Eng. degree (Mechanical Engineering) from Huaihai Institute of Technology, China.  His current PhD research involves predicting the mechanical environment that drives bone regeneration within tissue engineering scaffolds, and mechanical characterisation of stem cells during osteogenic differentiation and is funded through the European Research Council (ERC) grant, BONEMECHBIO, to Prof. Laoise McNamara.

Project Description

The primary aim of this study is to predict the mechanical environment that will drive bone regeneration, and optimise the mechanical stimulation for bone tissue engineering experiments. In this study, Feihu investigated the influence of scaffold geometry and applied loading on the resultant mechanical stimulation within TE scaffolds. He develops novel computational models (i.e. multiscale fluid-structure interaction) to quantify the mechanical stimulation imparting on bone cells within scaffolds. His research seeks to optimise mechanical stimulation based on a mechano-regulation model, which predicts the bone formation within tissue engineering scaffold. As a part of this research, Feihu also conducts the mechanical characterisation of adipose stem cells (ASCs) during osteogenic differentiation by atomic force microscopy (AFM) approach.

Conleth Mullen image for mechanobiology.ie site Dr. Conleth Mullen

Conleth’s research examined the effects of substrate stiffness and intercellular separation on osteocyte differentiation, demonstrating for the first time the in vitro differentiation of early stage osteocytes without the addition of osteogenic growth factors.

Conleth also used computational modelling techniques to examine the effects of cell stiffness, substrate stiffness, cell morphology and focal adhesion location on internal cell tension. This highlighted internal cell tension as a possible driver of the morphological and phenotypic change observed in the cells during mechanotransduction.

As part of his PhD studies, he also travelled to Worcester Polytechnic Institute to complete experiments into the combined effects of substrate modulus, thickness and heterogeneity on cell behaviour. Using cell spread area as an indicator of differentiation potential, he demonstrated that these three inter-related factors combine to control the stiffness as experienced by the cell. These experimental findings were then confirmed using finite element modelling.

Eimear Dolan image for mechanobiology.ie site Dr. Eimear Dolan

After obtaining her Bachelor’s degree in Biomedical Engineering in NUI Galway in 2010, Eimear began her PhD in the Biomedical Engineering department in NUIG with the title “Thermal Elevations of Orthopaedic Procedures: A Bone Cell Perspective” supervised by Prof. Laoise McNamara in collaboration with Stryker Instruments. Eimear’s PhD work involved developing computational and experimental studies to investigate the temperature generation and distribution throughout bone tissue during orthopaedic cutting procedures and how these temperatures affect postoperative bone regeneration.

Eimear is now working as a postdoctorate researcher with Dr. Bruce Murphy in the Trinity Centre for Bioengineering at Trinity College Dublin with the Advanced Materials for Cardiac Regeneration (AMCARE) consortium. AMCARE aims to establish a translational research program to develop truly restorative therapies for acute myocardial infarction (MI) repair by optimising cardiac progenitor cell therapy using smart biomaterials and advanced drug delivery, and coupling these therapeutics with minimally-invasive surgical devices. Specifically, Eimear and other consortium members are developing thedevice to deliver the advanced biomaterial into the heart wall in a minimally invasive approach. These multimodal therapies developed by this collaborative 7th Framework Programme European Commission project aim to modify the underlying pathology of the post-MI disease state, specifically replacing lost cells due to ischemia with functionally competent viable cells using cardiopoietic stem cells.AMCARE is a 4-year Horizon 2020 project with 10 acaedemic and industrial European partners, coordinated by the Royal College of Surgeons in Ireland (RCSI).

Stefaan Verbruggen image for mechanobiology.ie site Dr. Stefaan Verbruggen

Dr.Verbruggen’s thesis investigated the mechanical environment of the osteocyte in both healthy and osteoporotic bone, providing a greater understanding of bone mechanobiology. Using a combination of image segmentation and multiphysicscomputational modelling techniques, he developed accurate models of the intricate architecture of the lacunar-canalicular network and provided a novel insight into the mechanical stimuli sensed by the osteocyte in vivo. Furthermore, he developed a novel combined experimental loading and confocal microscopy technique, allowing direct characterisation of the strains experienced by live bone cells in situ during physiological loading. His research has illuminated a possible mechanobiological link between strains experienced by osteocytes and the complex changes the properties of bone tissue that occur during the development of osteoporosis.These studies were recognised with multiple national and international awards, including Best Paper at the 21st Annual Symposium on Computational Methods in Orthopaedic Biomechanics, First Prize in the MIMICS Innovation Awards, and the 2013 Engineers Ireland Biomedical Research Medal.

Dr.Verbruggen joined the Department of Bioengineering at Imperial College London in 2014 as a postdoctoral Research Associate. His current research is in the area of developmental biomechanics, exploring how the prenatal biomechanical environment affects the development of musculoskeletal diseases in later life. In particular, he applies a novel combination of cine-MRI scans and computational methods to determine the strength of a baby’s kick during pregnancy, and how the resulting mechanical stimulation relates to bone and joint formation before birth.

MeadhbhBrennan Dr. Meadhbh Brennan

Meadhbh dedicated her PhD research to discerning the alterations in the quantity and distribution of bone mineral during osteoporosis. She conducted in vitro studies which found that estrogen and notably estrogen withdrawal altered normal mineralization by osteoblasts and osteocytes, and estrogen depletion changed the mechano-responsiveness of bone cells. In vivo studies tested the hypotheses that bone mineral distribution is altered at a tissue level following estrogen deficiency and bisphosphonate treatment using an ovine model of osteoporosis. Quantitative backscattered imaging (qBEI) on a scanning electron microscope (SEM) was used to examine individual bone trabeculae (Figure 1 A) from the proximal femur of sheep. This project found that estrogen deficiency increased mineral heterogeneity (Figure 1 B), in particular in the most common osteoporotic fracture site known as the inter-trochanteric fracture line. In addition, it was found that the bisphosphonate Zoledronic Acid homogenized the mineral distribution, which may contribute to its ability to prevent fracture occurrence during osteoporosis. Meadhbh commenced her postdoctoral research at INSERM UMR957, Faculty of Medicine, in France, in 2012, to work on a European-wide FP7 funded bone tissue engineering project. Her role was in the preclinical research, integral to the clinical trials currently underway, and focused primarily on in vitro and in vivo studies of bone marrow mesenchymal stromal cells (MSC) with calcium phosphate biomaterials. She is currently an INSERM research fellow investigating alternative sources of stem cells for bone tissue engineering such as from adipose tissue or cord blood, researching in vitro predictors of in vivo donor variability, and assessing the role of MSC secreted factors in bone tissue engineering.

 9 Dr. Vishwa Deepak

Dr V. Deepak holds a doctorate in Biochemistry & Molecular Biology from Northeast Normal University, China. He received a PhD fellowship jointly awarded by the Ministry of HRD, Government of India and the Government of China under a bilateral exchange programme. Dr Deepak recently joined Prof. McNamara’s research group after completing his Postdoctoral research at the University of Pretoria, South Africa. He received Vice Chancellor’s Postdoctoral Research fellowship at the University of Pretoria.
During his PhD, Dr Deepak’s research focused on osteoblast differentiation induced by the master transcription factor RUNX2 and the epigenetic mechanisms underlying the transcriptional control of osteoblast differentiation. During his recent postdoctoral research work at the University of Pretoria, Dr Deepak worked on the discovery of novel plant-derived small molecules with potent inhibitory effects against osteoclast formation.
Dr Deepak in collaboration with Prof McNamara at the National University of Ireland-Galway further explores the novel and intricate mechanisms involved in the mechanosensing and mechanotransduction pathways regulated by osteocytes in bone. This involved characterising and exploiting these pathways as a therapeutic target against osteolytic diseases such as osteoporosis by employing in vitro, ex vivo and in vivo models.

 NUIG MechBio Susan Susan Lowry

Susan Lowry has a B.Sc. Physics with Biomedical Sciences from Dublin City University. After which came to do a M.Sc. Biomedical Engineering in NUIG where she has worked on a Bone-on-a-chip for commercial drug screening application.

myles Myles McGarrigle (PhD)

Myles joined the group as a post-graduate researcher in September 2012 after receiving his Bachelor of Engineering (Mechanical) from the National University of Ireland, Galway. His Phd project focuses on the effects of extracellular mechanics on osteocyte differentiation in vitro.  He is designing  a novel tissue engineering bioreactor that can generate both cellular level stresses and mechanical stimulation regimes that are comparable to those experienced in vivo.

Project Description:

Osteocyte cells play a vital role in maintaining bone health by monitoring physical cues arising during load-bearing activity. Traditional bone tissue engineering (TE) approaches involve seeding bone cells onto 3D scaffolds of different pore size and stiffness. However, previous studies have not reported significant osteocyte differentiation within bone TE constructs. Recently it has been demonstrated that extracellular matrix (ECM) stiffness and cell density can regulate osteoblast differentiation in two dimensional (2D) environments. However, in vivo osteocytes reside in a three dimensional (3D) network within the ECM and it is not yet known whether osteoblast-osteocyte differentiation within a 3D matrix can be induced by the control of matrix stiffness and intercellular separation. A TE strategy that recreates the physical nature of the ECM and determines the optimal cell separation distance within this environment might provide an effective approach to develop bone constructs with an osteocyte network in place. In addition, constructs through bioreactor culture systems.

pushpa Pushpalata Kayastha (RA)

Pushpalata Kayastha was awarded a Bachelor in technology degree from GGSIPU, India in 2013. She was awarded MSc Biotechnology from NUI Galway in 2015. She is working as Research assistant in project funded by SFI in Biomedical Engineering under the supervision of Prof. Laoise McNamara in the Mechanobiology Research Group in the Discipline of Biomedical Engineering, NUI Galway. The project is mechanobiology based approaches for treatment of bone osteoporosis and to explore the novel and intricate mechanisms involved in the mechanosensing and mechanotransduction pathways regulated by osteocytes in bone.